
이민석

NVIDIA

Faster Transformer: CUDA-Centric
BERT Inference Optimization

CONTENTS

1. Background and Motivation

2. Performance Analysis/Optimization of BERT Inference on GPU

3. Evaluation

4. Faster Transformer Repository

1. Background

1.1 What is BERT?

One of the Most Popular Large-Scale Language Model
- Based on Transformer Encoder

- Provide a leap in accuracy for various NLP tasks beyond conversational AI

- Companies across industries are trying to use the model in production

1.2 Challenge in Production

- Quality of Service: Accuracy + Latency

- BERT requires significant amounts of computation during inference

- Obstacle for companies to deploy BERT in its real-time applications

0

60

120

180

32 64 128La
te

n
cy

 (
m

s)

Sequence Length

BERT-base latency on CPU

• # Layers: 12

• Batch Size: 1

• # Heads: 12

• Size per Head: 64

1.3 Characteristics of Inference

- Compute capability possibly different from Training’s

e.g., training with multiple V100s vs. inference with a single T4

- No backward pass

- Inference-specific optimization is necessary and possible

2.Performance Analysis of
BERT Inference on GPU

2.1 Purpose of Analysis

- To check if there exists opportunities for latency reduction

and get some hints for the performance optimization

- To verify if the applied techniques are really effective

- Profiling tools such as Nsight Systems can be useful

2.2 BERT Encoder Cell

Multi-Head
Attention

GELULNFC FC LNFC

2.2.1 Profiling BERT Encoder Cell

- 1 encoder cell leads to > 40 CUDA kernels!

Attention
BERT Encoder Cell

GELU(?!)

2.3. GELU

2.3.1 GELU Activation

- Easy-to-write element-wise op in Tensorflow by compositing existing ops

- But how about performance?

2.3.2 Profiling GELU on GPU

- GELU consists of 8 CUDA kernels

- Aggregated runtime is almost equivalent to W*x+b

W*x+b GELU

Dense

pow tanh

2.3.3 Memory Access of naïve GELU

pow

Global Memory

Kernel 1 Kernel 2 Kernel 3 Kernel 4 tanh Kernel 6 Kernel 7

time

Reads/Writes to the same memory locations

2.3.4 Kernel Launch Overhead

Kernel 0

Global Memory

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5 Kernel 6 Kernel 7

time

Kernel Launch is not perfectly free (5~10 us)

2.3.5 Fused GELU

Fused Kernel

Global Memory

time

Read/Write Once1 Launch

2.3.6 Fused GELU CUDA C++ Function

Faster than pow(x, 3)

2 / np.pi

why not __global__? (explained later)

- All the operations are done in on-chip registers

2.4. addBias + GELU

2.4.1 BERT Encoder Cell revisited

Multi-Head
Attention

LNFC LNFCGELUWx

+ b

Fully-Connect Layer

- Wx: highly optimized CUBLAS GEMM

- +b: simple addBias CUDA kernel

2.4.2 Fusion of addBias and GELU

Multi-Head
Attention

LNFC LNFC
+b &
GELU

- Simply call GELU device function inside your addBias kernel!

- Wx still relies upon CUBLAS GEMM

Wx

2.5. addBias + LayerNorm

Wx

2.5.1 BERT Encoder Cell revisited

Multi-Head
Attention

+b &
GELU

- Residual connection

- addBias

- Layer Normalization

Wx

+ b

Wx

+ b

LN LN

Wx

2.5.2 Fused Layer Normalization

Multi-Head
Attention

+b &
GELU

- Residual connection + addBias + LayerNorm

Wx Fused
LN

Wx Fused
LN

2.6. Multi-Head Attention

2.6.1 Multi-Head Attention

- Input: (BxSxNxH)

FC

FC

FC

Transpose

Transpose

Transpose

MatMul Scale Mask Softmax

MatMul

Q

K

V

QT

KT

VT

2.6.1 Multi-Head Attention

- Input: (BxSxNxH)

MatMul Scale Mask Softmax

MatMul

QT

KT

VT

+b

+b

+b

Transpose

Transpose

Transpose

Q

K

V

Wx

Wx

Wx

2.6.2 Fusion of addBias and Transpose

- Improve thread-level parallelism, launch overhead and memory efficiency

MatMul Scale Mask Softmax

MatMul

QT

KT

VT

add_
QKV_
bias

Q

K

V

Wx

Wx

Wx

2.6.3 Scale, Mask and Softmax

- Scale and Mask are element-wise operations

MatMul

MatMul

QT

KT

VT

add_
QKV_
bias

Q

K

V

Wx

Wx

Wx

Scale Mask Softmax

2.6.5 Fused Softmax

Global Memory

time

Read QK
1 Launch

Scale

Read att_mask

Mask Softmax
masked_val

Write result

2.6.6 CUDA Thread/Memory Hierarchy

thread

thread block

grid

local memory

shared memory

global memory

warp (32 threads) - CUDA provides useful primitives for warp-level data exchange

2.6.7 Softmax Implementation Sketch

Sequence Length

emasked_val (in local memory)Warp 0 Warp 1 Warp 2 Warp 3

T0 T32 T64 T96

WarpReduce WarpReduce WarpReduce WarpReduce fast in-register summation

sum_val (in shared memory)

2.6.7 Softmax Implementation Sketch

Sequence Length

sum_val (in shared memory)Warp 0 Warp 1 Warp 2 Warp 3T0 T32 T64 T96

load back to local memory of first 4 threads

s_sum (in shared memory)

T0 T1 T2 T3

T0

WarpReduce

2.6.7 Softmax Implementation Sketch

emasked_val / s_sum (in local memory)Warp 0 Warp 1 Warp 2 Warp 3

s_sum (in shared memory)

broadcast to each thread

2.6.8 Task-Specific Optimization

Input Tensor Shape: [batch_size, head_num, seq_len, seq_len]

Tasks with large batch sizes: already have enough thread blocks

- # blocks: (batch_size x head_num), block size: (seq_len x seq_len)

Tasks with small batch sizes: need to improve # thread blocks

- # blocks: (batch_size x head_num x seq_len), block size: (seq_len)

2.7 Fused Multi-Head Attention

- Wx and MatMul are the calls to highly optimized CUBLAS GEMMs

QT

KT

VT

add_
QKV_
bias

Q

K

V

Fused SoftmaxMatMul

MatMul

Wx

Wx

Wx

2.7.1 Profiling FasterTransformer

- cuBLAS GEMMs represent >= 80% of execution time

- What can we do to improve the performance further?

Attention
BERT Encoder Cell

Q K V

add_bias_act

2.8. Lower Precision

2.8.2 Tensor Cores in NVIDIA GPUs

- Matrix-multiply-and-accumulate units available in Volta/Turing Archs

- To improve throughput by using lower precisions, e.g., FP16

2.8.3 Enable FP16 in cuBLAS GEMMs

In/Out Matrices

Atype/Btype Ctype

CUDA_R_32F CUDA_R_32F

CUDA_R_16F CUDA_R_16F

CUDA_R_16F CUDA_R_32F

2.8.4 Profiling Again

- Reduced the latency of GEMMs by halving the precision (FP32->FP16)

Attention

BERT Encoder Cell

Q K V

add_bias_act

3. Evaluation

3.1. Methodology

- Baseline: Tensorflow w/ XLA

- Model: BERT Base

- GPU: V100, P4, and T4

- CPU: Intel Xeon Gold 6132 CPU @ 2.60GHz

3.2. Performance Comparison on V100

- # Layers: 12

- Sequence Length: 32

- # Heads: 12

- Size per Head: 64

- Memory Clock: 877MHz

- Processor Clock: 1380MHz

0
15
30
45
60
75

100 200 300 400 500

La
te

n
cy

 (
m

s)

Batch Size

Lower is Better

Tensorflow XLA (FP16)

Faster Transformer (FP16)

3.3. Faster Transformer on T4

- # Layers: 12

- Batch Size: 1

- # Heads: 12

- Size per Head: 64

- Memory Clock: 5000MHz

- Processor Clock: 1590MHz

0

1.5

3

4.5

6

7.5

32 64 128

La
te

n
cy

 (
m

s)

Sequence Length

Lower is Better

P4 (FP32) T4 (FP32) T4 (FP16)

All lower than 10 ms

4. Faster Transformer Repository

4.1. Code Structure

- All that I explained has been open-sourced as Faster Transformer!
https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer

CUDA C++ Implementation,

Tensorflow and TensorRT interfaces

Sample illustrating how to use it

in C++, Tensorflow, and TensorRT

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer

4.2. Use Case: PingAn’s PA-Occam-Bert

- DAWNBench SQuAD

- F1 score 75.80

- Faster Transformer Integration

on 1X Tesla V100

- https://github.com/geekerzli/PA-

Occam-Bert

• https://dawn.cs.stanford.edu/benchmark/#squad-inference-time

https://github.com/geekerzli/PA-Occam-Bert
https://dawn.cs.stanford.edu/benchmark/#squad-inference-time

4.3. Upcoming Faster Transformer 2.0

- Transformer Decoder will be included!

- Your feedback is highly appreciated

https://github.com/NVIDIA/DeepLearningExamples/issues

https://github.com/NVIDIA/DeepLearningExamples/issues

Q & A

Thank You

