Faster Transformer: CUDA-Centric **BERT Inference Optimization**

이미선 **NVIDIA**

CONTENTS

- 1. Background and Motivation
- 3. Evaluation
- 4. Faster Transformer Repository

2. Performance Analysis/Optimization of BERT Inference on GPU

1. Background

1.1 What is BERT?

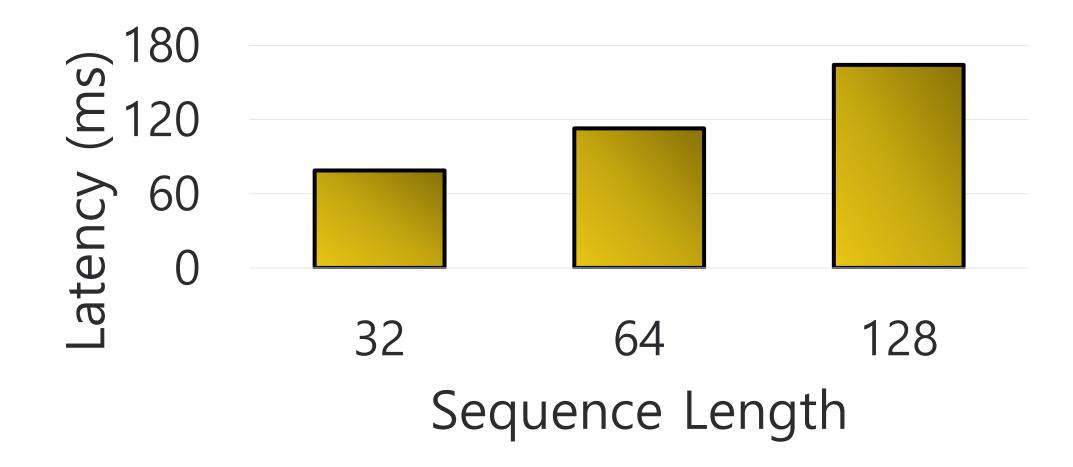
One of the Most Popular Large-Scale Language Model

- Based on Transformer Encoder

 Provide a leap in accuracy for various NLP tasks beyond conversational AI - Companies across industries are trying to use the model in production

1.2 Challenge in Production

- Quality of Service: Accuracy + Latency
- BERT requires significant amounts of computation during inference
- - Obstacle for companies to deploy BERT in its real-time applications



- BERT-base latency on **CPU**
- # Layers: 12
- Batch Size: 1 \bullet
- # Heads: 12 ullet
- Size per Head: 64

1.3 Characteristics of Inference

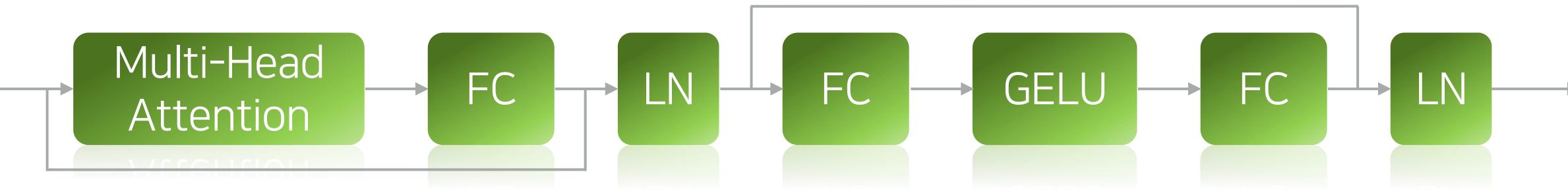
- Compute capability possibly different from Training's e.g., training with multiple V100s vs. inference with a single T4
- No backward pass
- Inference-specific optimization is necessary and possible

2. Performance Analysis of **BERT Inference on GPU**

2.1 Purpose of Analysis

- To check if there exists opportunities for latency reduction and get some hints for the performance optimization - To verify if the applied techniques are really effective
- Profiling tools such as Nsight Systems can be useful

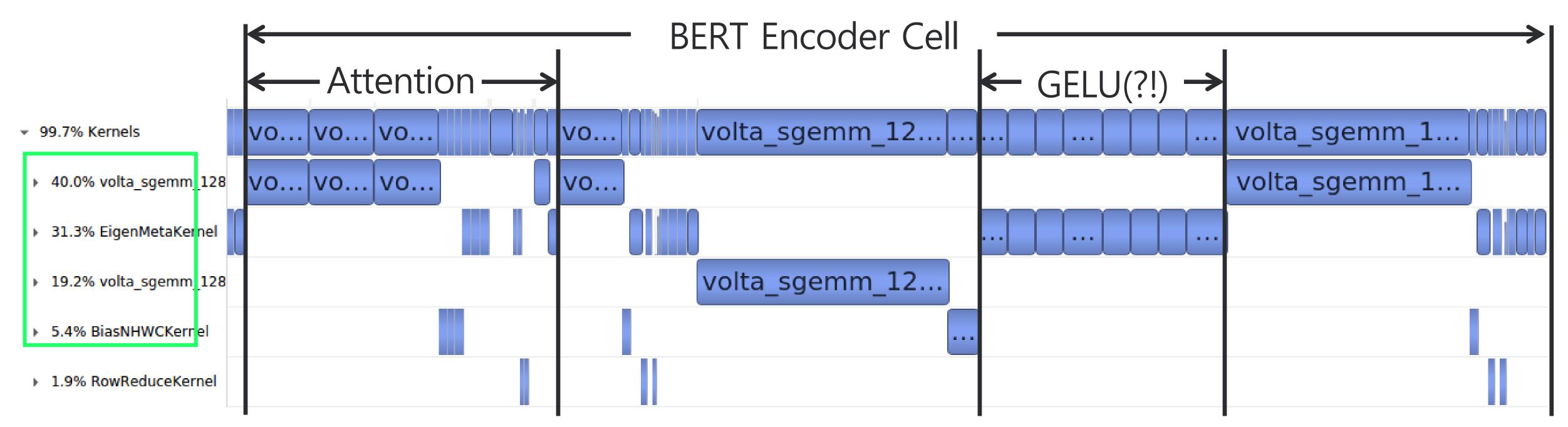
2.2 BERT Encoder Cell



DEVIEW 2019

2.2.1 Profiling BERT Encoder Cell

- 1 encoder cell leads to > 40 CUDA kernels!



2.3. GELU

2.3.1 GELU Activation

- But how about performance?

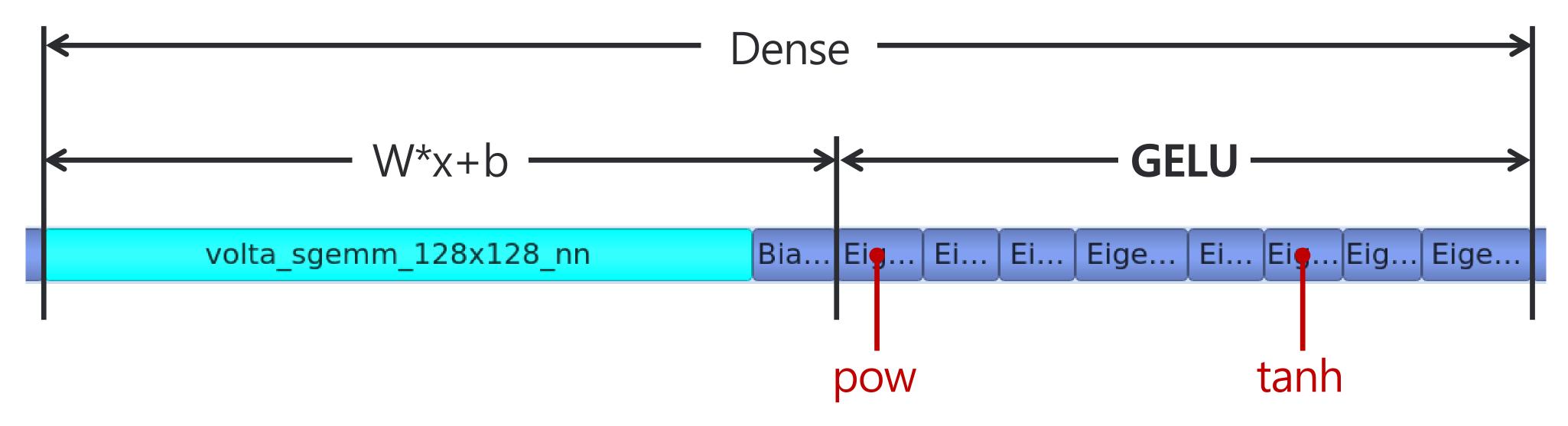
```
def gelu(x):
cdf = 0.5 * (1.0 + tf.tanh(
 return x * cdf
```


- Easy-to-write element-wise op in Tensorflow by compositing existing ops

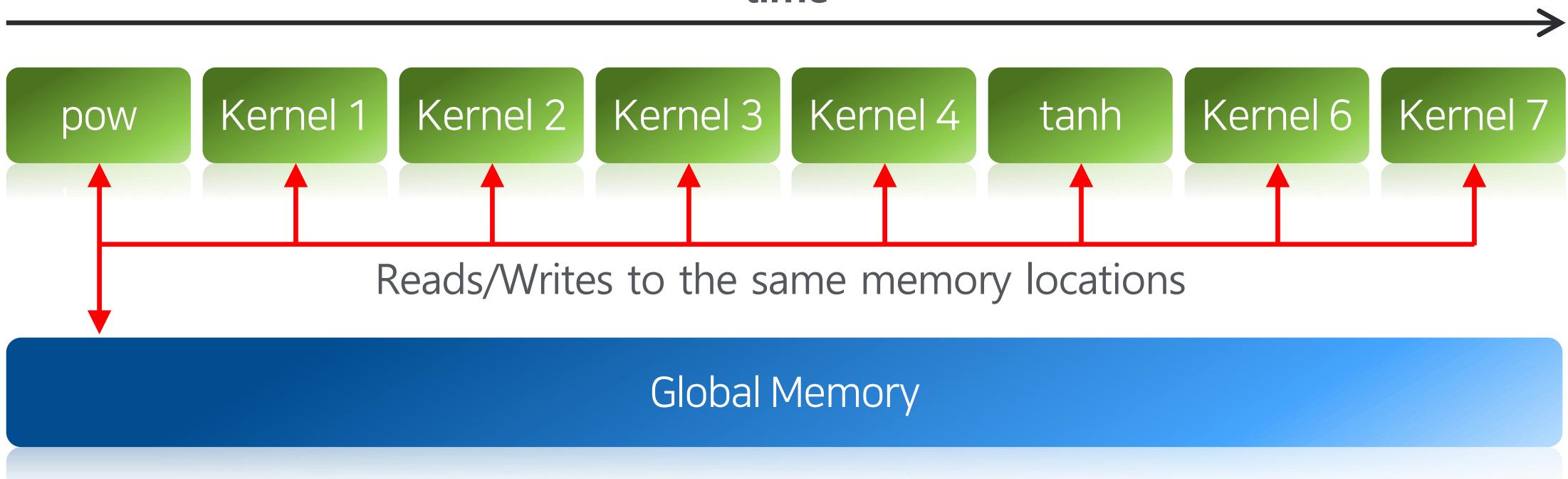
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))

2.3.2 Profiling GELU on GPU

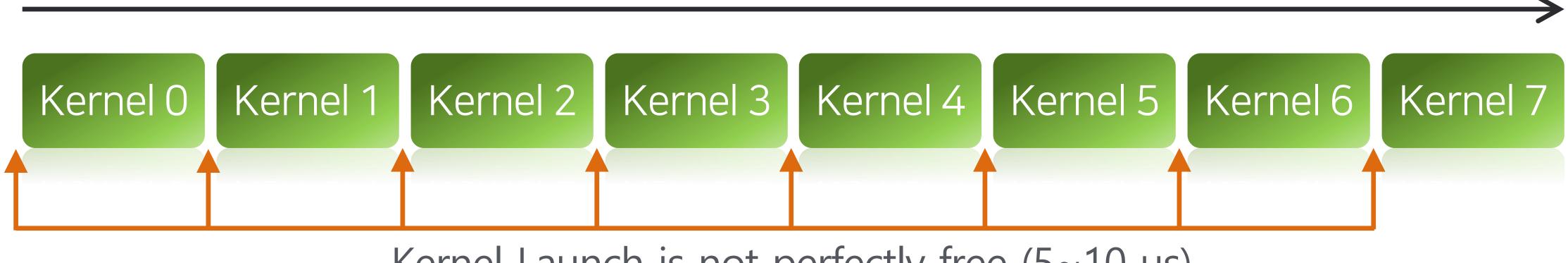
- GELU consists of 8 CUDA kernels
- Aggregated runtime is almost equivalent to W*x+b



2.3.3 Memory Access of naïve GELU



2.3.4 Kernel Launch Overhead

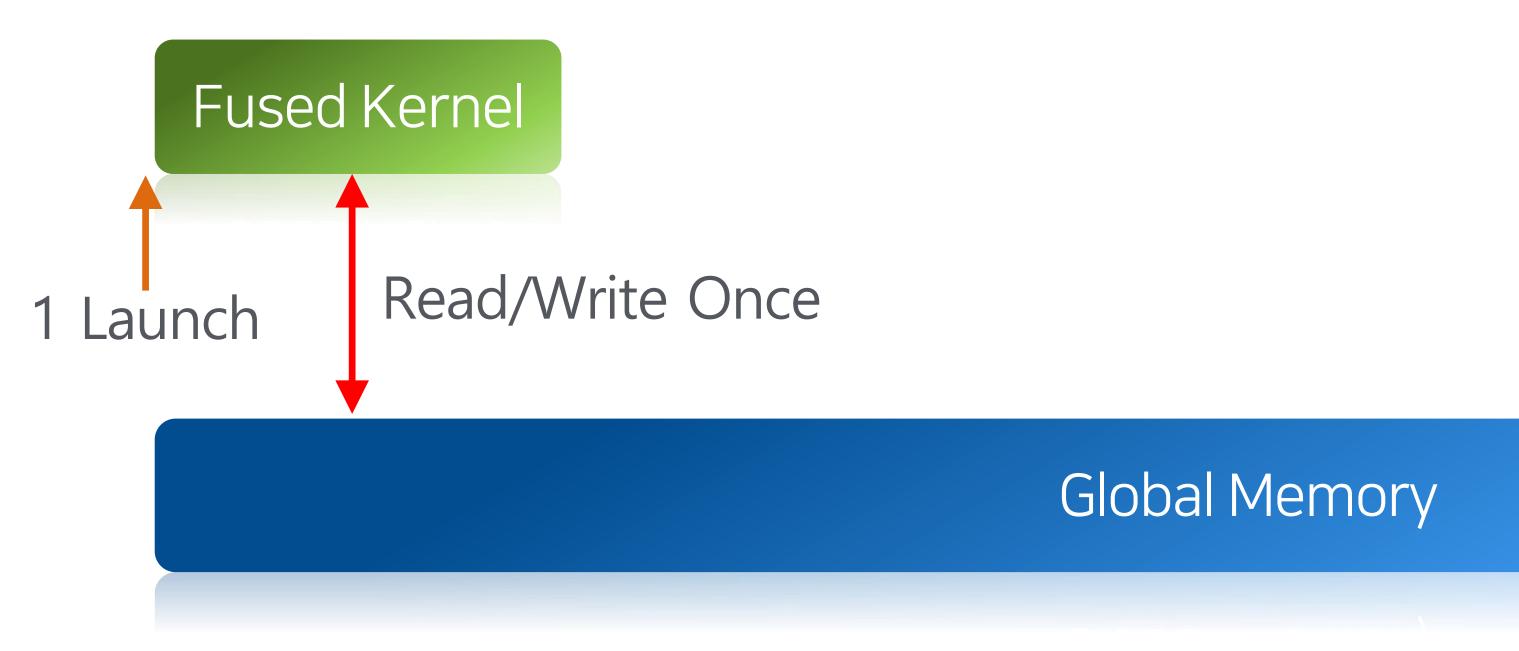


Kernel Launch is not perfectly free (5~10 us)

time

Global Memory

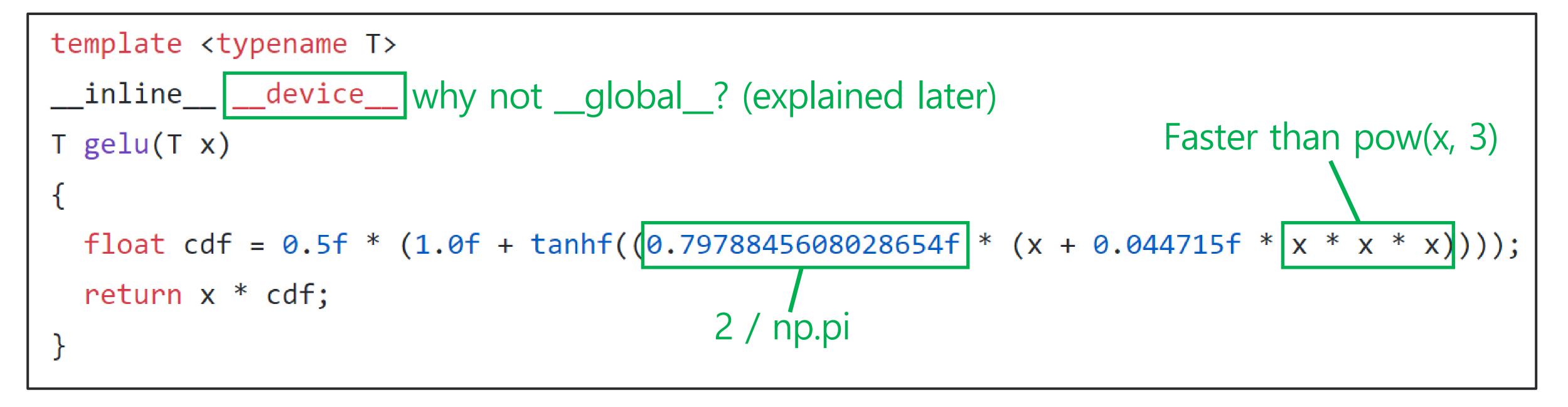
2.3.5 Fused GELU



time

2.3.6 Fused GELU CUDA C++ Function

- All the operations are done in on-chip registers

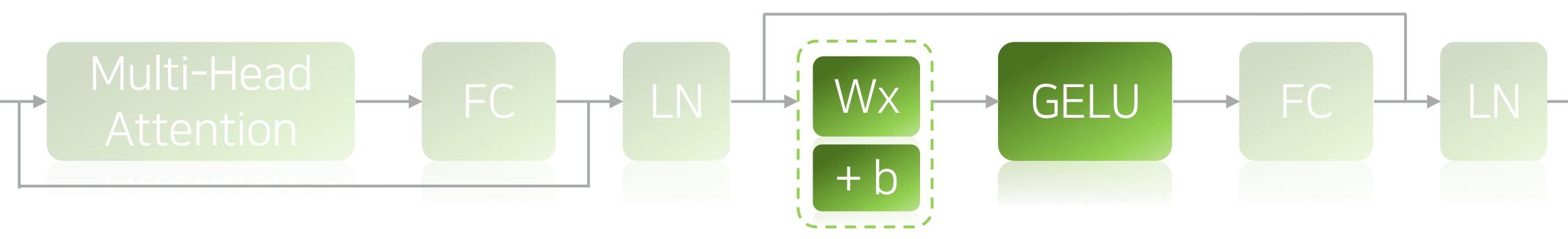


2.4. addBias + GELU

2.4.1 BERT Encoder Cell revisited

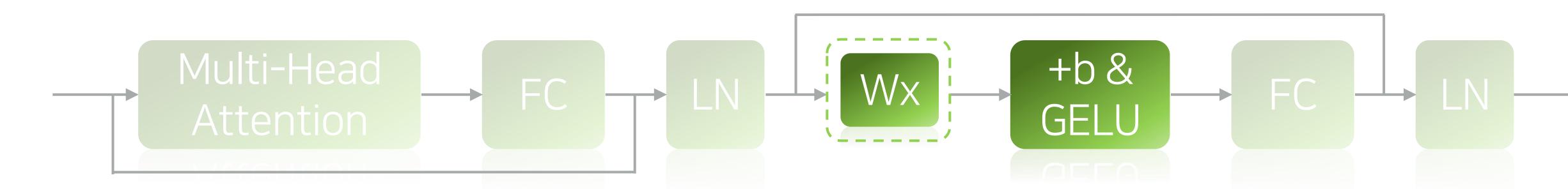
Fully-Connect Layer

- Wx: highly optimized CUBLAS GEMM
- +b: simple addBias CUDA kernel -



2.4.2 Fusion of addBias and GELU

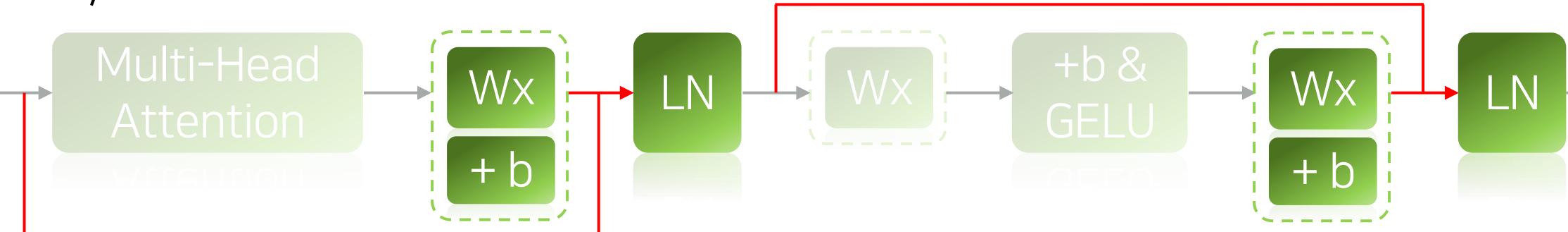
- Simply call GELU device function inside your addBias kernel!
- Wx still relies upon CUBLAS GEMM



2.5. addBias + LayerNorm

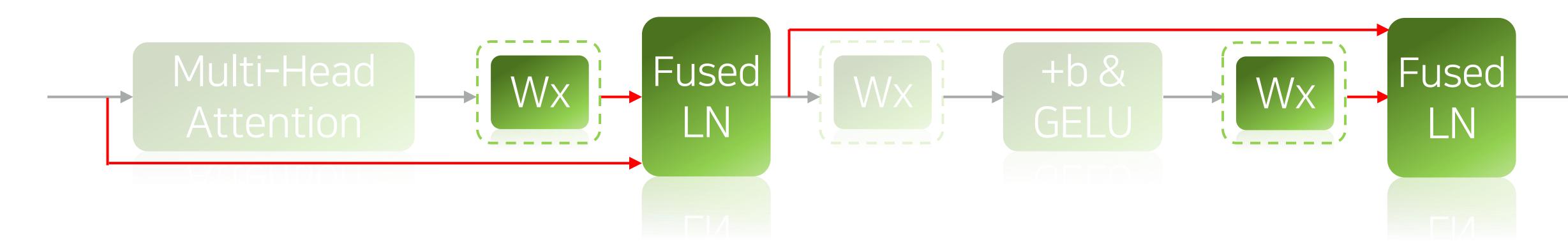
2.5.1 BERT Encoder Cell revisited

- Residual connection
- addBias
- Layer Normalization



2.5.2 Fused Layer Normalization

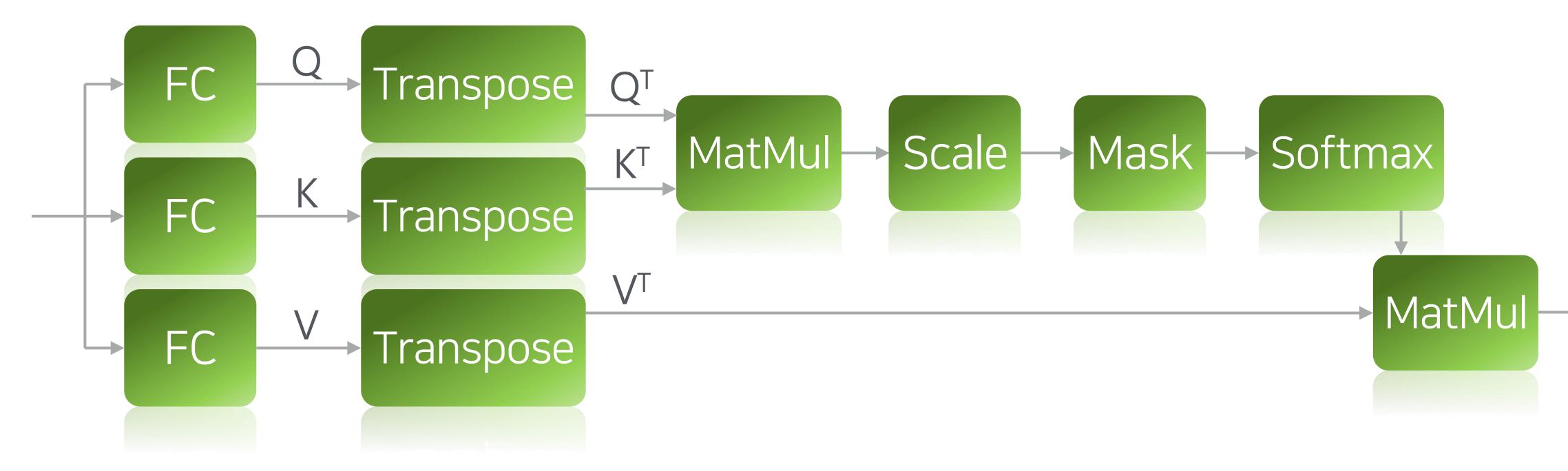
Residual connection + addBias + LayerNorm



2.6. Multi-Head Attention

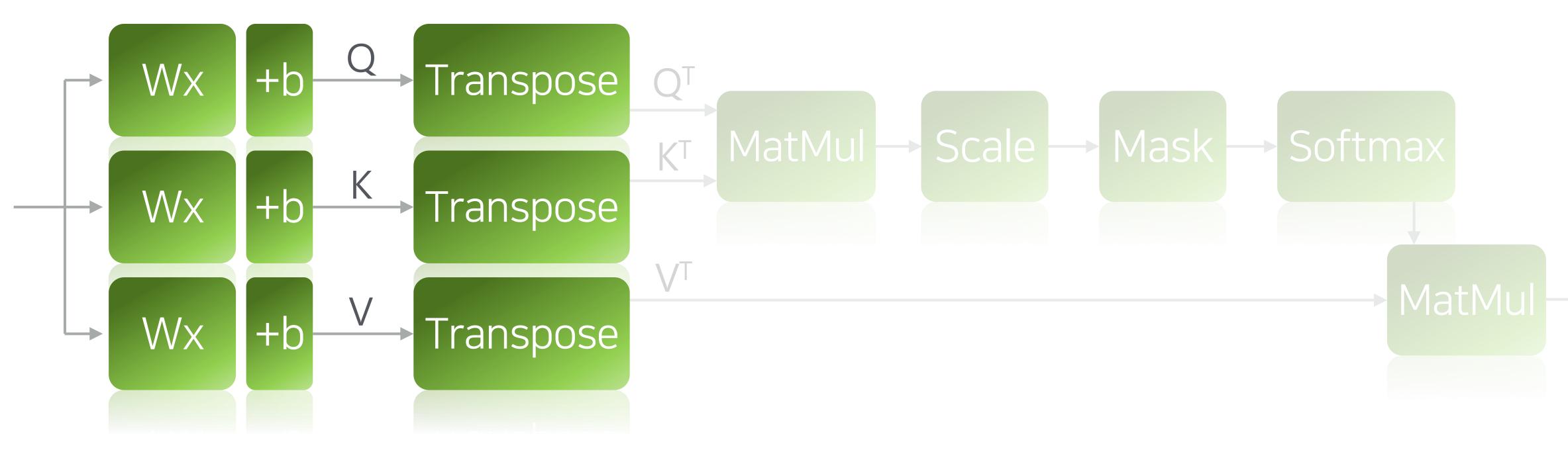
2.6.1 Multi-Head Attention

Input: (BxSxNxH) —

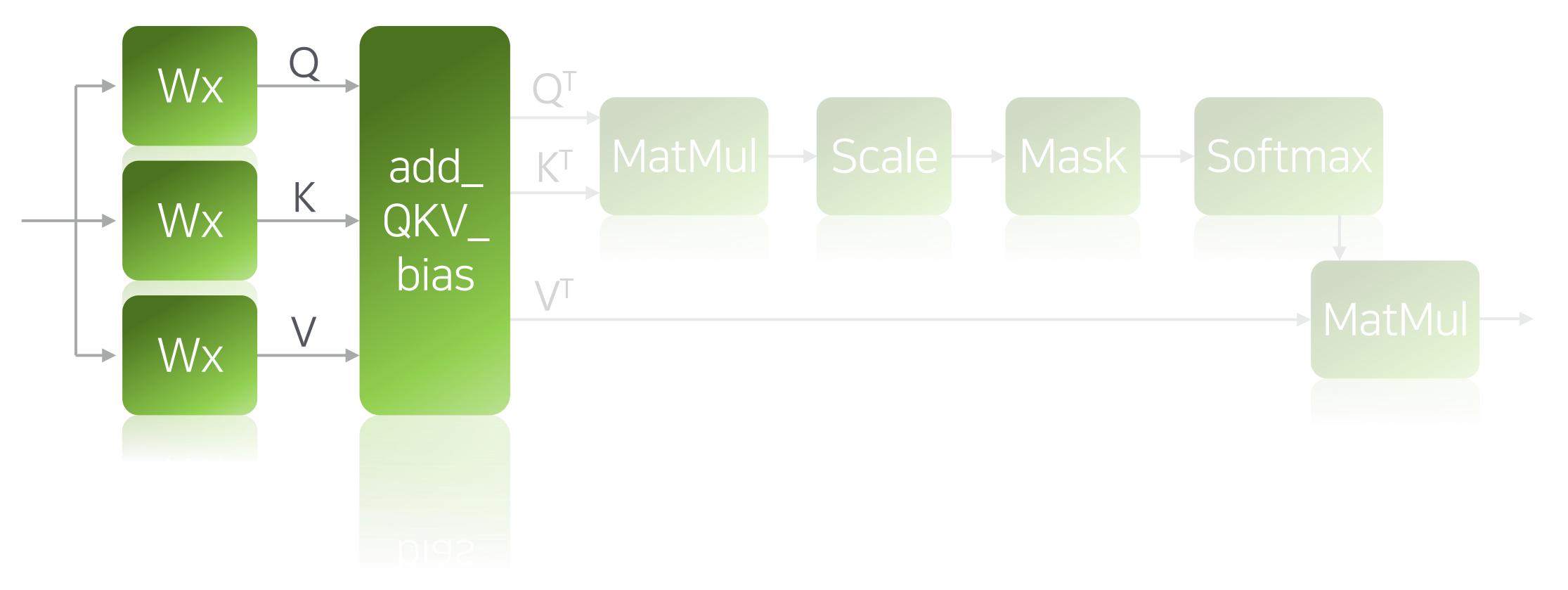


2.6.1 Multi-Head Attention

Input: (BxSxNxH) _



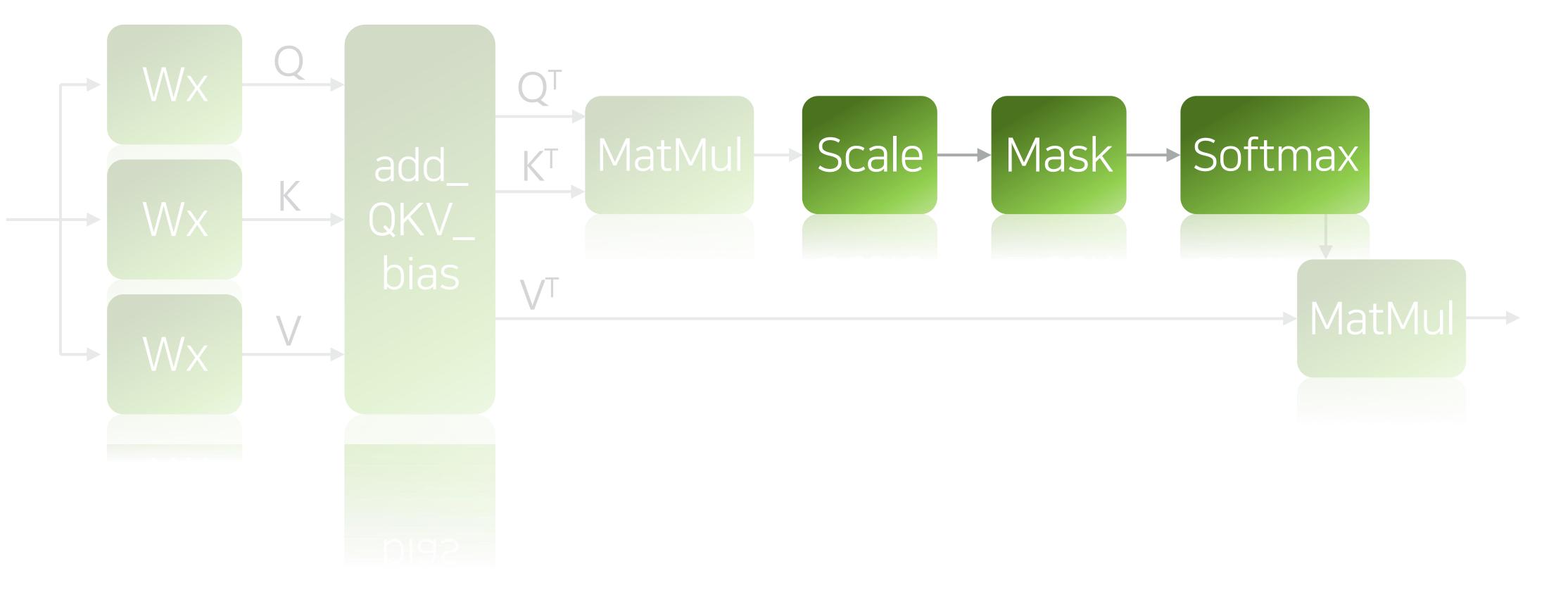
2.6.2 Fusion of addBias and Transpose



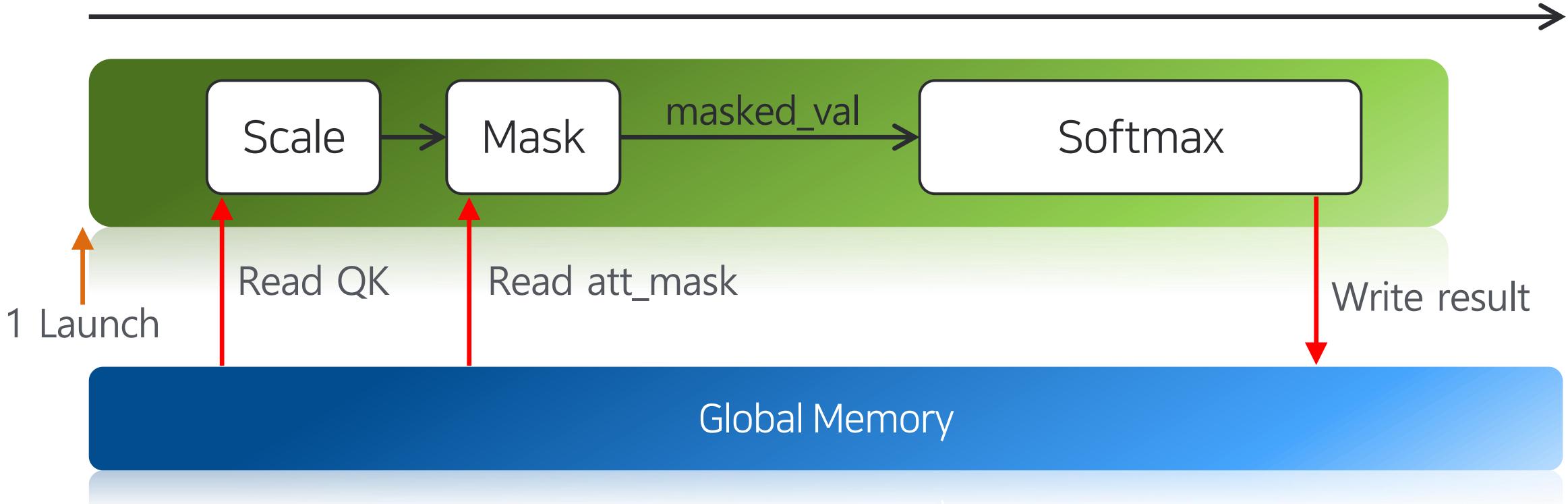
Improve thread-level parallelism, launch overhead and memory efficiency

2.6.3 Scale, Mask and Softmax

- Scale and Mask are element-wise operations

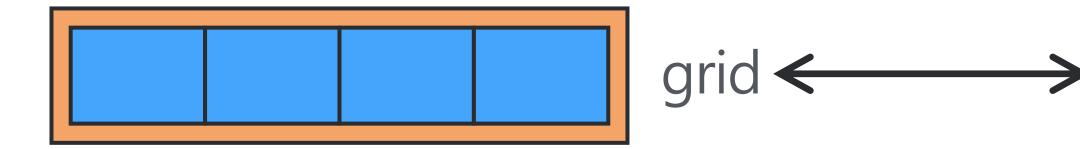


2.6.5 Fused Softmax



2.6.6 CUDA Thread/Memory Hierarchy

thread < local memory



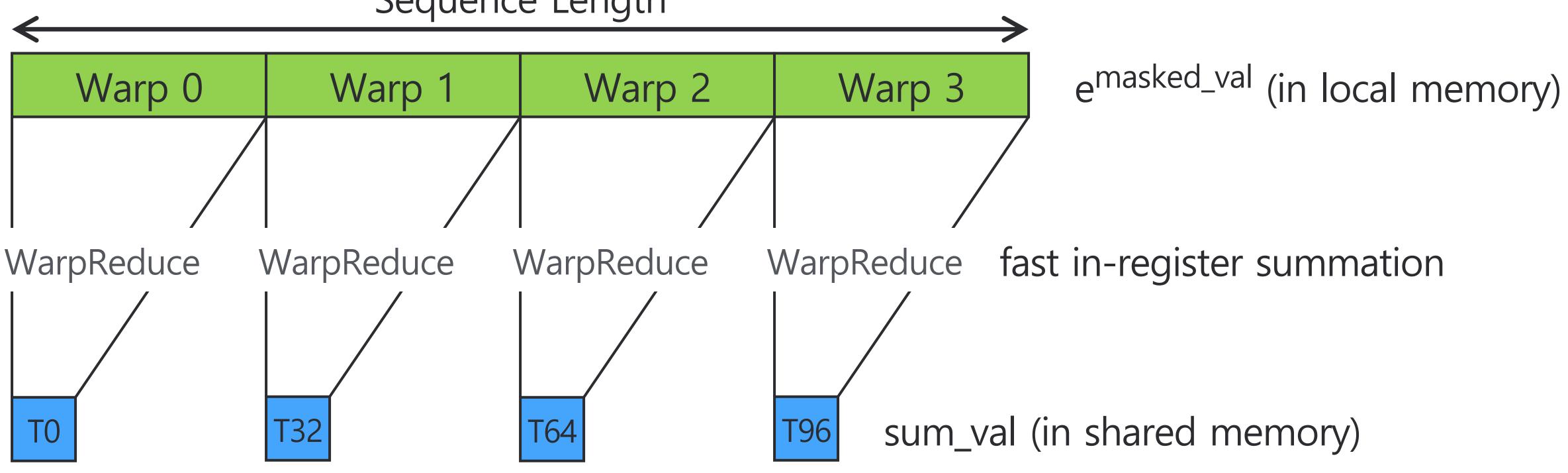
warp (32 threads) - CUDA provides useful primitives for warp-level data exchange

shared memory

global memory

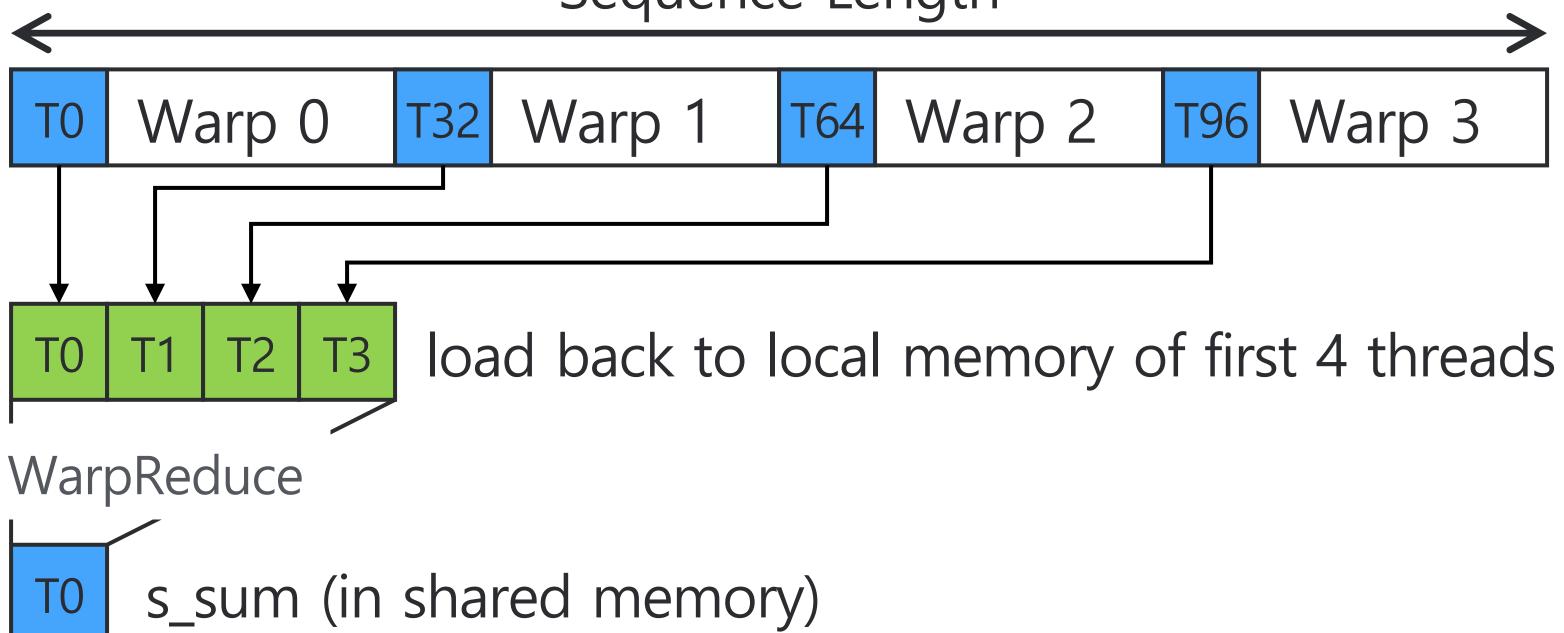
2.6.7 Softmax Implementation Sketch

Sequence Length



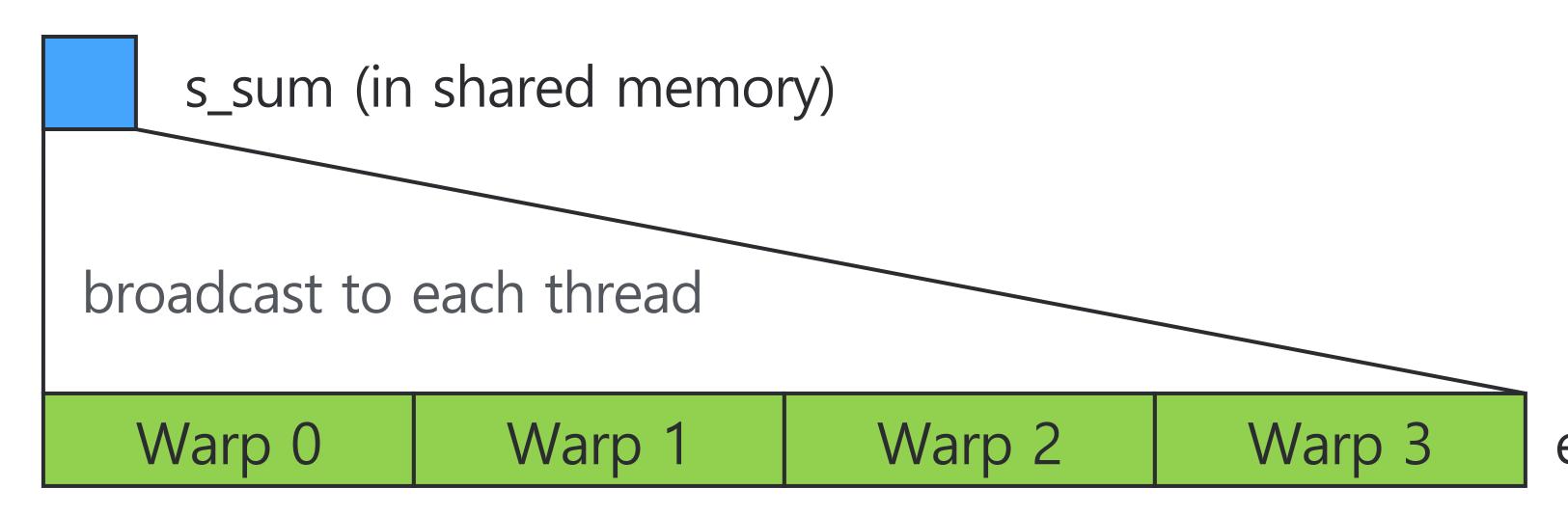
2.6.7 Softmax Implementation Sketch

Sequence Length



sum_val (in shared memory)

2.6.7 Softmax Implementation Sketch



e^{masked_val} / s_sum (in local memory)

2.6.8 Task-Specific Optimization

Input Tensor Shape: [batch_size, head_num, seq_len, seq_len]

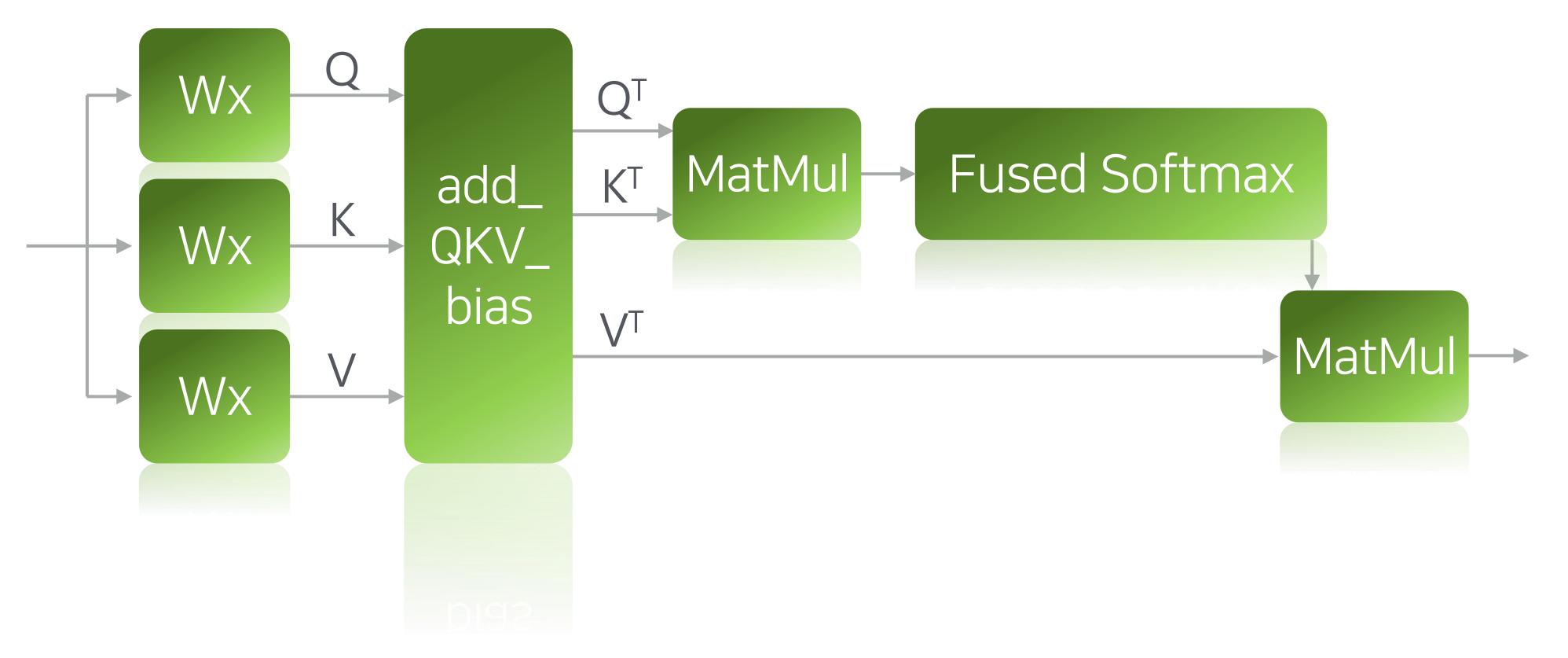
Tasks with large batch sizes: already have enough thread blocks

Tasks with small batch sizes: need to improve # thread blocks - # blocks: (batch_size x head_num x seq_len), block size: (seq_len)

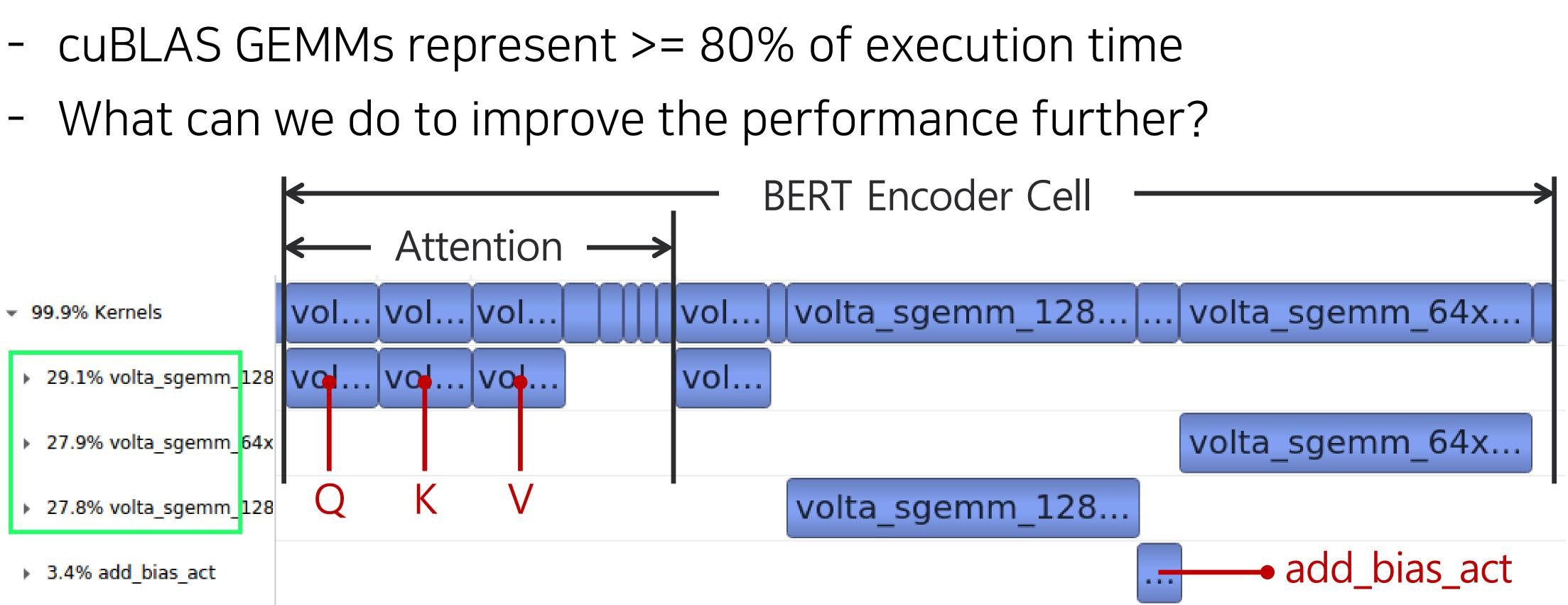
- # blocks: (batch_size x head_num), block size: (seq_len x seq_len)

2.7 Fused Multi-Head Attention

Wx and MatMul are the calls to highly optimized CUBLAS GEMMs



2.7.1 Profiling FasterTransformer

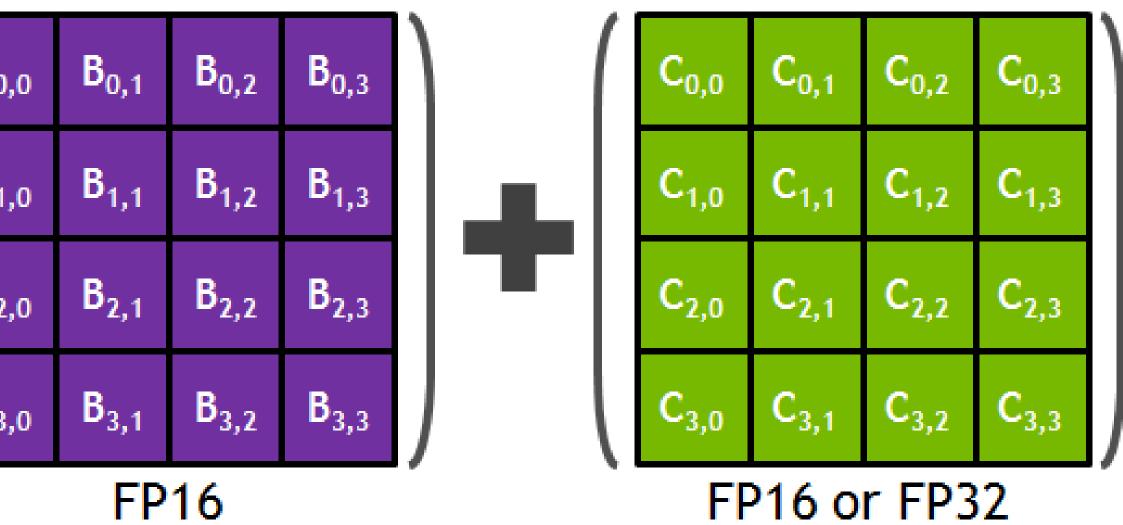


2.8. Lower Precision

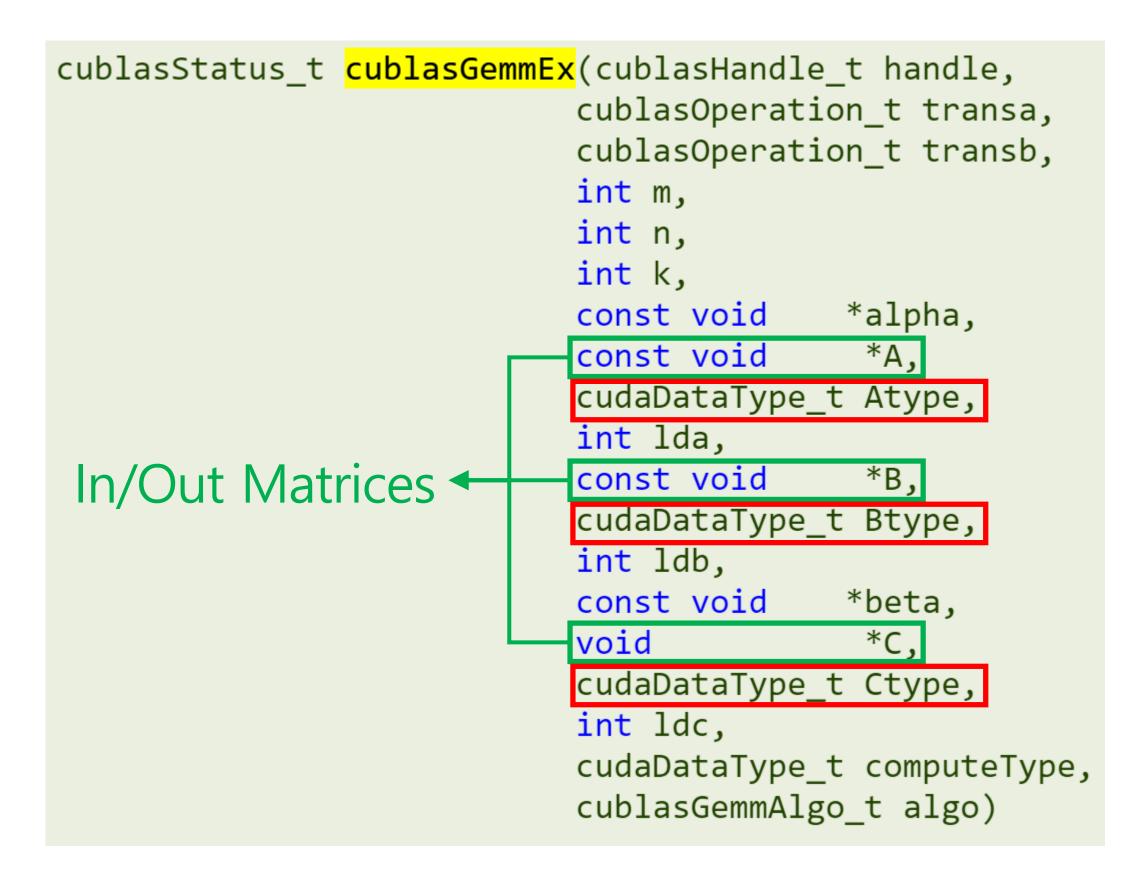
2.8.2 Tensor Cores in NVIDIA GPUs

- Matrix-multiply-and-accumulate units available in Volta/Turing Archs — - To improve throughput by using lower precisions, e.g., FP16

					N /	
	A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}	$\left \right $	B _{0,}
n –	A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}		B _{1,}
	A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}		B _{2,}
	A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}		B _{3,}
FP16 or FP32	*	FP	16		<i>*</i> *	

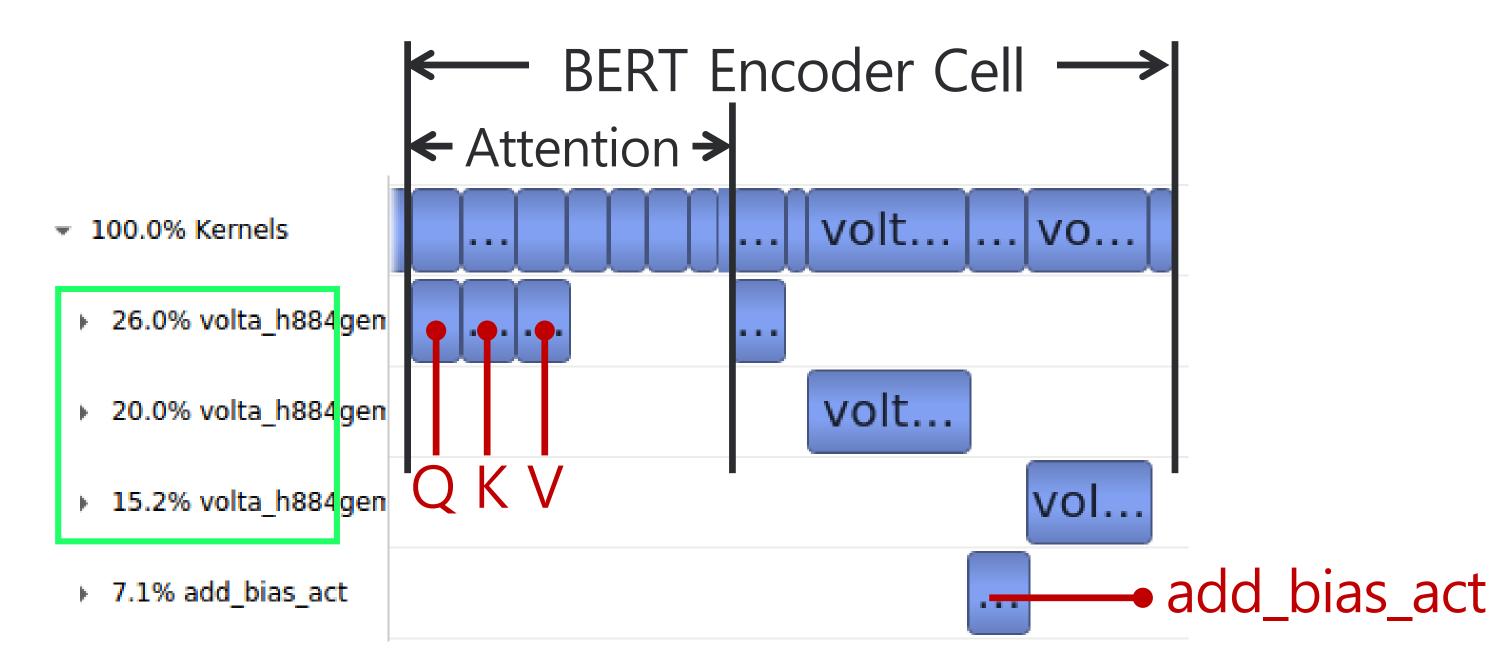


2.8.3 Enable FP16 in cuBLAS GEMMs



Atype/Btype	Ctype		
CUDA_R_32F	CUDA_R_32F		
CUDA_R_16F	CUDA_R_16F		
CUDA_R_16F	CUDA_R_32F		

2.8.4 Profiling Again



- Reduced the latency of GEMMs by halving the precision (FP32->FP16)

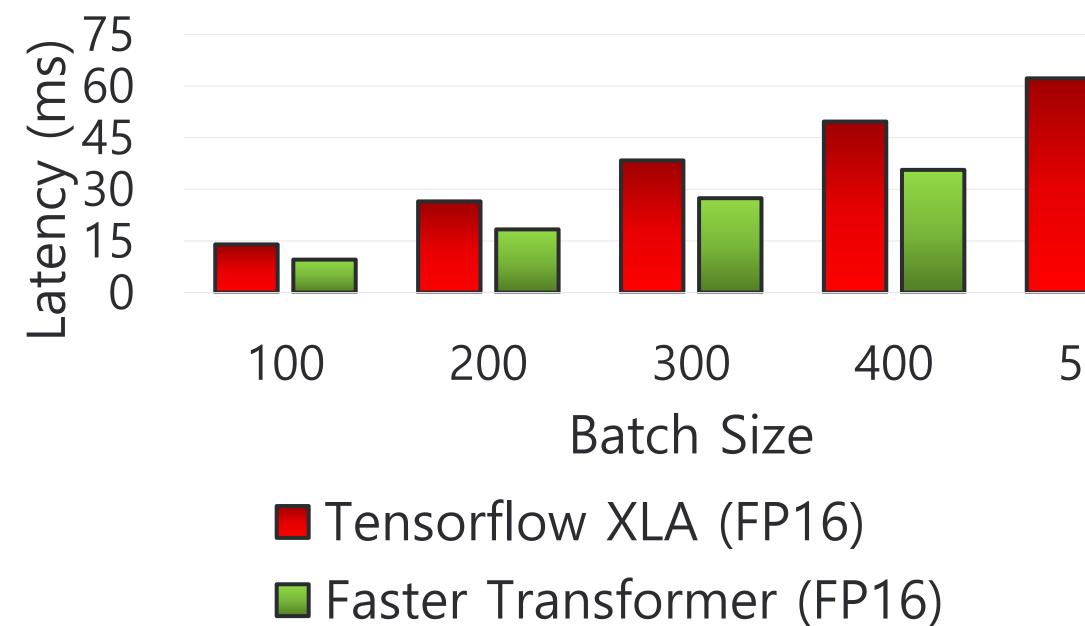
3. Evaluation

3.1. Methodology

- Baseline: Tensorflow w/ XLA
- Model: BERT Base
- GPU: V100, P4, and T4
- CPU: Intel Xeon Gold 6132 CPU @ 2.60GHz

3.2. Performance Comparison on V100

Lower is Better



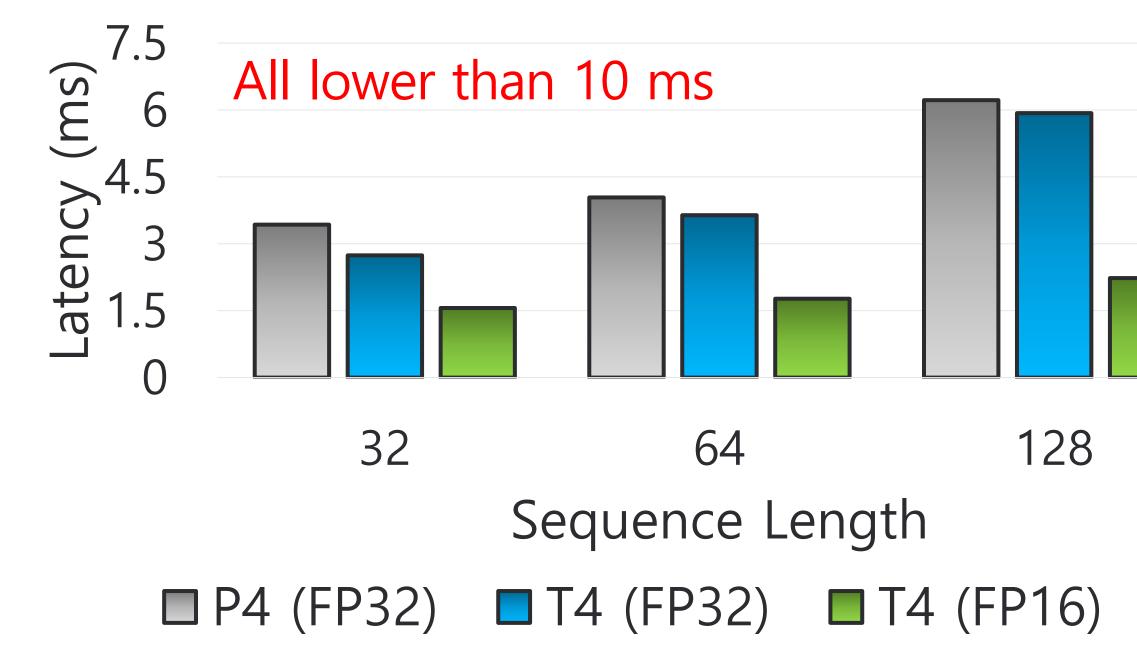
- # Layers: 12
- Sequence Length: 32
- # Heads: 12
- Size per Head: 64

500

- Memory Clock: 877MHz
- Processor Clock: 1380MHz

3.3. Faster Transformer on T4

Lower is Better

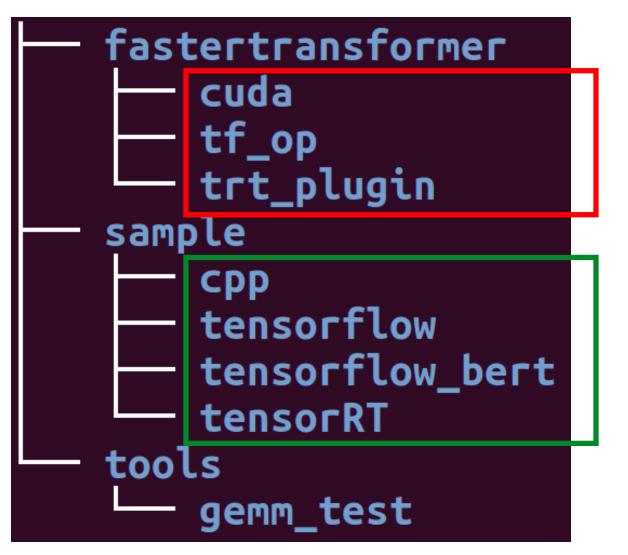


- # Layers: 12
- Batch Size: 1
- # Heads: 12
- Size per Head: 64
- Memory Clock: 5000MHz
- Processor Clock: 1590MHz

4. Faster Transformer Repository

4.1. Code Structure

- All that I explained has been open-sourced as Faster Transformer! https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer



CUDA C++ Implementation, Tensorflow and TensorRT interfaces Sample illustrating how to use it in C++, Tensorflow, and TensorRT

4.2. Use Case: PingAn's PA-Occam-Bert

Rank	1-example Latency (milliseconds)	Model	Framewo
1 Jul 2019	7.5790	PA-Occam-Bert Ping An Technology Occam Platform source	Tensorflo 1.13.0
2 Feb 2019	7.9000	FastFusionNet <i>Wu et al. (Cornell,</i> <i>SayMosaic, Google)</i> source	Pytorch v0.3.1
3 Oct 2017	100.0000	BiDAF <i>Stanford DAWN</i> source	TensorFlo v1.2

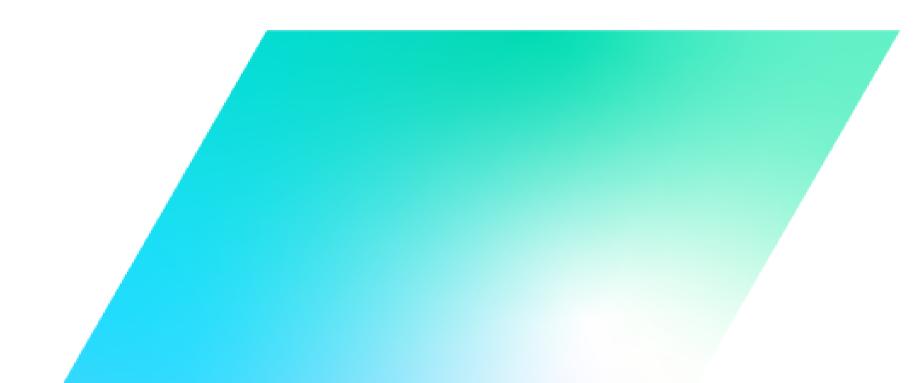
https://dawn.cs.stanford.edu/benchmark/#squad-inference-time

ork	-	DAWNBench SQuAD
SW	-	F1 score 75.80
	-	Faster Transformer Integration
h		on 1X Tesla V100
_	-	<u>https://github.com/geekerzli/PA-</u>
OW		<u>Occam-Bert</u>

4.3. Upcoming Faster Transformer 2.0

- Transformer Decoder will be included!
- Your feedback is highly appreciated https://github.com/NVIDIA/DeepLearningExamples/issues

Q&A



Thank You

